
 1

A Scientific Workflow Construction Command Line
Paul T. Groth and Yolanda Gil

USC Information Sciences Institute
4676 Admiralty Way, Marina del Rey, CA 90292

{pgroth, gil}@isi.edu

ABSTRACT
Workflows have emerged as a common tool for scientists to
express their computational analyses. While there are a
multitude of visual data flow editors for workflow
construction, to date there are none that support the input of
workflows using natural language. This work presents the
design of a hybrid system that combines natural language
input through a command line with a visual editor.

Author Keywords
Scientific workflows, command line, natural language.

ACM Classification Keywords
H5.m. Information interfaces and presentation (e.g., HCI)

INTRODUCTION
As scientists increasingly perform their data analyses and
experiments computationally, scientific workflows have
arisen as a useful mechanism to represent, execute and
share these analyses and experiments. Scientific workflows
declaratively capture the steps of an analysis and the
dependencies between them [4]. Steps are represented as
components (e.g. software programs or web service
invocations) that define the computations that should take
place. Typically, dependencies are specified through the
data flow between components. Once an analysis has been
defined as a workflow, workflow systems can then be used
to execute the analysis in changing environments [5], find
appropriate data for the analysis [5], as well share it with
other users [1]. Workflows are also widely used for
business process management and many other applications.

In addition to the aforementioned functionality, workflow
systems often provide graphical user interfaces for the
construction and editing of workflows. When we use the
term workflow system in the rest of this paper, we are
referring to those that provide end user interfaces.

Examples include Taverna [9] and Kepler [15] as research
environments for scientific workflows, and there are also
commercial workflow editors such as Tivoli and YAWL.
While the editing interfaces of these systems differ in some
respects, they all follow the general approach of
representing workflows as a series of nodes (components)
and arcs depicting dataflow between components.

Textual instruction using natural language is a very
common way to describe procedural artifacts [16]. In spite
of its ambiguity and other characteristics that make
interpretation hard, natural language is a ubiquitous means
for specifying concisely what needs to be done. In addition,
research into visual programming calls into question the
superiority of visual notations over textual languages [7,
17]. In this paper, we explore the textual input of
workflows in natural language. A textual interface does not
necessarily need to be in lieu of a visual dataflow editor, but
rather be an alternative complementary form for a user for
specifying workflows. Hybrid approaches that combine text
and diagrams have been found to be very effective [11, 17].

Interpreting natural language comes with many challenges.
Natural language has great variability and is inherently
ambiguous. This makes the development of a textual editor
challenging, since the system needs to interpret open-ended
ambiguous text. To address this challenge, our system
generates alternative interpretations of textual input,
identifies those that are inconsistent with what it knows,
and then displays to the user the interpretations of the
instruction in the visual dataflow editor. The user can then
select the appropriate interpretation or edit one of those
generated by the system to create the workflow they had
intended.

Despite the challenges, using natural language input may
have other advantages. Our work explores the use of a
command line interface to integrate the textual instruction
with search capabilities. One important motivation is
vocabulary variability, where users use different terms to
refer to the same workflow components. [3] found that less
than a dozen people out of a thousand would use a term that
had been pre-selected to refer to a specific computer
command. In recent work, a tool for finding API
components (a similar environment to workflow systems),
text based search over the Internet was shown to be an
effective mechanism to allow programmers to find the
correct component using their own vocabulary [20]. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
IUI’09, February 8–11, 2009, Sanibel Island, Florida, USA.
Copyright 2009 ACM 978-1-60558-331-0/09/02...$5.00.

Proceedings of the 2009 ACM International Conference on Intelligent User Interfaces, Sanibel, FL, February 8-11, 2009.

issue is aggravated when repositories contain a large
number of available workflow components [14]. Using the
command line, we can integrate search directly with the
input mechanism for workflow construction. Through the
use of textual input, we aim to allow users to express
workflows with a personalized vocabulary.

The rest of this paper is organized as follows. We begin by
motivating our adoption of a hybrid-approach, in particular,
the use of a command line for text entry. We then describe
our user interface and how user input on the command line
is processed and the results displayed to the user. After
which, we describe an example usage scenario. Finally, we
discuss related work and conclude.

COMMAND LINE INTERFACES
Search is used by millions of people everyday, increasingly;
search not only retrieves results but also performs actions.
Consider the following example: Typing the phrase
“convert 12 kg to pounds” into Google performs the
conversion and the answer (26 pounds) is returned.

Thus, search engines are becoming command lines, and as
Norman states [18]:

 “These modern command languages have some
major virtues over the ones in the past. They are
tolerant of variations, robust and exhibit slight
touches of natural language flexibility”

In this light, a properly implemented command line
interface can provide the sort of robust user interaction to
deal with vocabulary variability.

Another strength of command line interfaces is that, unlike
GUIs where only a limited number of actions can be
accessed through menus, buttons, and tree hierarchies, they
can scale to a large number of actions. This is essential in
the scientific workflow context, where there can be
thousands of available components. A major disadvantage
of command line interfaces was the necessity to memorize
commands. With modern command lines this is no longer
the case, as appropriate suggestions based on the system’s
current knowledge are made while the user types.

Command lines provide a familiar user interface element
for textual input. Modern incarnations provide support for
variable vocabulary and suggestions. Given these benefits,
we adopt a command line as the interface element for the
textual input of workflows. While modern command lines
are flexible, they cannot replace the common visual
dataflow representation of a workflow. Thus, we view the
command line as an addition to current workflow editing
practices, and, as we later show, this hybrid approach
allows for important interactivity with the user.

W-CMD: THE WORKFLOW COMMAND LINE
The workflow command line (W-CMD) is designed to be
an addition to current data flow based visual workflow
editors. Currently, W-CMD is implemented as part of the

Wings Workflow System [5]; however, the design of W-
CMD is not tied to the Wings feature set. Through the rest
of this discussion, we note when W-CMD can take
advantage of particular Wings’ features. W-CMD supports
the most common type of information found in workflow
descriptions, namely, step information (component types,
inputs, outputs, preconditions, component ordering). As it
interacts with the user, W-CMD cycles through the
following phases: Suggestion Generation, Command Line
Parsing, Hypothesis Generation, and Hypothesis Pruning.

The cycle can be summarized as follows. As the users
types, suggestions are generated based on the current
knowledge of the workflow system. When the user
completes a command and hits enter, the command is
parsed extracting as much information as possible about the
intended workflow additions and modifications. Using this
information along with the current workflow, a set of
potential workflows is then generated. This set is then
pruned to a single workflow through a combination of
consistency checks (done by the system) and user selection.
The user is then free to input another command.

Before describing each phase, we first describe the
knowledge sources that W-CMD relies upon. This specifies
the set of requirements for a workflow system that wishes
to support command line entry of workflows.

• A mechanism for discovering available components, in
particular, their names, inputs and outputs and their
types (i.e. component/service descriptions). This is
commonly referred to in workflow systems as a
component or service registry [14].

• A list of synonyms for components.

• A list of paraphrase patterns that map sets of words to
operations that can be performed on the workflows.

Each paraphrase pattern reflects how a user might express
an operation. An example operation, AddComponent, is
shown in Figure 1 along with some of its associated
paraphrase patterns. The operation has five arguments
denoted by a “+”. Arguments with a trailing “?” are
optional. Each paraphrase pattern consists of arguments
with interspersed keywords. So for the first paraphrase
pattern in Figure 1, the keywords are “performs”, “on” and
“and return” and the arguments are +component, “+input”
and“+output”.

Suggestion Generation
Suggestions are generated from a combination of
component synonyms, component names and keywords
extracted from paraphrase patterns. As the user types,
suggestions are displayed according to alphabetical match.
Figure 2(A) shows the interface for displaying suggestions.
Once a user has selected a suggestion, it is inserted into the
command.

 3

Command Line Parsing
After the user finishes inputting a command (denoted by
hitting return), it is then processed into an operation to be
performed on the workflow being created and displayed as
a workflow diagram. Inspired by work on to-do lists [6],
our approach uses paraphrase patterns to perform the
mapping of text to operations. Like to-do lists, workflows
often have irregular and partial sentence constructs and the
language used is often specific to the user.

When a command is parsed, W-CMD attempts to align the
command with each paraphrase pattern in the system. For
example, the command “This workflow performs a blastp
search on protein sequence” would align with the first
paraphrase in Figure 1 based on the keywords “performs”
and “on”. Note that alignment begins when the first
keyword in a paraphrase pattern is matched. Hence, in the
previous example, “This workflow” would be ignored.

Once alignment has taken place, the values for each
argument can be extracted from the text resulting in
argument mappings. Thus, “blastp search” would map to
+component and “protein sequence” would map to +input
in Figure 1’s first paraphrase pattern. The alignment is best
effort, if there are any keywords at the end or beginning of
the command that do match the pattern, the system will still
accept the paraphrase pattern.

It is often that case that more than one paraphrase pattern
matches a command. To select the most appropriate
interpretation, we rank the paraphrase patterns based on
specificity defined as the greatest number of matching
keywords. This ranking scheme is taken from [6].

There are some restrictions on the paraphrase patterns the
system supports. Except for the +component argument, all
arguments must be separated by keywords. We are able to
relax this restriction for the component argument because
the system can recognize component names using its
internal knowledge of component types and synonyms. For
the other arguments, this recognition knowledge is not
currently supported. Thus, our system can support
paraphrase patterns such as “1: +component +output”. Once
a paraphrase pattern has been selected by ranking, its
corresponding operation can be looked up. Before
proceeding to hypothesis generation, one more step is
necessary.

Because of the vocabulary variability problem, even after
mapping a component name (e.g. blastp search) to the
component argument (+component), the underlying
workflow system still may not be able recognize the given
name. Hence, in this step, W-CMD uses its synonym
knowledge to find a component name that is recognizable
(e.g. blast_ddbj) and inserts the result in the argument
mappings. If a recognizable name is not found, the
component name extracted from the command is used.
Once this step is finished, hypothesis generation is then
provided the operation to perform on the workflow along
with the argument mappings.

In our implementation all paraphrase patterns are provided
by hand and were derived from sentences found in a
workflow description corpus [1]. However, we conjecture
that paraphrases could be learned from the user by
observing how the user modifies a workflow after the
system fails to understand a command.

Hypothesis Generation
Given our prior analysis of textual descriptions of
workflows, the argument mappings retrieved from parsing
will be incomplete for the specified operation. For example,
the command “add blastp resulting in a sequence” is
missing the definition of the input to blastp. Hence, during
hypothesis generation, W-CMD tries to fill in these missing
arguments. This process often results in many possible
argument mappings. For each possible mapping, the
operation is then applied to the current workflow. As a
consequence several workflow hypotheses are produced.
We now discuss this hypothesis generation process in more
detail using the example of adding one or more components
to a workflow.

The first step, for adding components, in hypothesis
generation is to determine any missing inputs and outputs.
To do this, for each component obtained in the previous
phase, W-CMD retrieves its component description from
the component registry. From this description, the inputs,
outputs and their types are extracted. If the user did not
define any inputs or outputs for a component, those defined
in the component registry are used.

After this step, if there is more than one component
specified, W-CMD then reasons about the data flow
between components using projection. It begins by
connecting all components provided as input from parsing.
If more than one component is provided, W-CMD starts
with the first component and connects its outputs to
compatible inputs from the second component in the list.
The process then repeats starting with the second
component and so on. Compatibility is determined by type
checking. The result of this step is a set of workflow
subsections that can be inserted into the current workflow.
Currently, only one subsection is selected for insertion.
Insertion into the workflow is determined by what outputs
of the workflow correspond to the inputs of the first

Operation:
AddComponent +component +input? +output?
+input_type? +output_type?

Paraphrase patterns:

performs +component on +input and return +output
1: +component +output
given an +input of +input_type , +component
add +component that uses +input

Figure 1: An operation and its paraphrase patterns

component within the subsection. For each compatible
output and input, a separate workflow is hypothesized.

Hypothesis Pruning
Once a set of workflow hypotheses has been generated, the
user, with help from W-CMD, needs to decide, which
hypothesis corresponds to their intent, we term this phase
hypothesis pruning. This phase is where the hybrid
approach is critical. Each workflow hypotheses is presented
to the user as a data flow diagram. The user moves between
the hypotheses by clicking the next button as shown in
Figure 2 (C) and (D), which also show two different
hypotheses for the same command.

To aid the user, we use the workflow consistency check
built into Wings to mark inconsistent workflows. This
consistency check performs a form of goal regression on
the workflow determining if input/output pairs are
consistent according to the constraints on those variables
retrieved from the component registry. Beyond these
approaches, there are other possible pruning mechanisms
including executing the hypotheses and marking those
which do not complete.

While W-CMD could remove inconsistent hypotheses, we
chose instead to allow the user to see all the available
hypotheses because they could possibly be closer to the
user’s original intent. Essentially, the consistency provides
extra information to the user for their pruning/selection
task. Once the user selects a hypothesis, they can either
operate on it with the standard visual interface or enter
more commands. We now show how our current
implementation of W-CMD performs in a particular
scenario and present the features of the hybrid approach
that aid usability.

A USAGE SCENARIO
To demonstrate the operation of W-CMD, we used a set of
bioinformatics components from the GenePattern project
(www.genepattern.org). These components were chosen
because they have already been modeled in the Wings
workflow framework. In the context of this domain, we
mirrored a textual description found in a workflow corpus
[1]: “This workflow performs data cleansing on genes,
clusters the results and then displays a heatmap.”

The text was entered as three separate commands:

1. This workflow performs data cleansing on genes,
2. clusters the results
3. and then displays a heatmap

The workflow shown in Figure 2 (B) is the result of
entering command 1. Note that “data cleansing” is a
synonym for the PreprocessDataset component. The
workflows shown in Figure 2 (C) and (D) are the two
hypotheses generated after entering the last command. Both
hypotheses are consistent with the user’s input. The user
then selects Figure 2 (C), as it is the workflow they had
intended to specify.

RELATED WORK
Other approaches to learning procedural knowledge from
instruction use natural language [8]. These systems take on
instruction in natural language, but then well-known
phenomena in natural language processing start to crop up
including ambiguities, lack of referents, and unresolved
attachments. Our approach constrains the utterance that the
system is trying to interpret to deal with these difficulties.

An interface design based on controlled natural language
might be an alternative option [2]. Controlled languages are
designed by defining a well-specified grammar for each
utterance. The user is then confined to specify their
statements by following that grammar. The advantage is
that it is easier for the system to interpret the utterances.
The disadvantage is that users must get used to the grammar
and how it allows them to express their statements.

Figure 2: A hybrid environment for workflow creation

B

C D

A

 5

Specifying procedures through example demonstrations is
another approach investigated in the literature [12, 13, 19].
However, the expressivity of the languages and the
constructs allowed pose limitations on the complexity of the
procedures that users can specify.

Visual interfaces and other natural interface designs have
been developed that are effective means for end users to
specify procedural information to a system. [10] provides a
thorough overview of such systems, which they call
empowering systems since they aim to help non-
programmers to specify behaviors for a computer system.
Some of the best-known systems are AgentSheets,
Stagecast, Logo, Alice, Forms/3, and Hypercard. Most of
these tools are designed to target specific tasks, objects, or
behaviors. They have been shown effective in experiments
with non-programmers. Perhaps integrating some of these
approaches into workflow interfaces would be beneficial.

CONCLUSION
This work’s contribution is a hybrid interface for the textual
input of workflows. This work has only begun to address
the difficult problem of handling workflows input as text.
Areas for future work include learning and capturing
paraphrases, handling advice, goals, and sub-workflows,
allowing for personalization, dealing with more workflow
operations, and providing more relevant suggestions.

ACKNOWLEDGEMENTS
We gratefully acknowledge support from the US Defense
Advanced Research Projects Agency under grant number
HR0011-07-C-0060.

REFERENCES
1. De Roure, D., Goble C., Stevens, R. “The design and

realization of the myExperiment Virtual Research
Environment for social sharing of workflows”. Future
Generation Computer Systems. In Press.

2. Fuchs, N. E. and R. Schwitter. “Attempto Controlled
English (ACE).” Proceddings of the First International
Workshop on Controlled Language Applications
(CLAW), 1996.

3. Furnas, G., Landauer, T., Gomez, L., and S. Dumais.
“The Vocabulary Problem in Human-System
Communication.” Communications of the ACM, 30,
1987.

4. Gil Y, Deelman E., Ellisman M., Fahringer T., Fox G.,
Gannon D., Goble C., Livny M., Moreau L., Myers J.,
"Examining the Challenges of Scientific Workflows,"
Computer , vol. 40, no. 12, pp. 24-32, December, 2007.

5. Gil Y., Ratnakar V., Deelman E, Mehta G, and Kim J.
“Wings for Pegasus: Creating Large-Scale Scientific
Applications Using Semantic Representations of
Computational Workflows,” Proc. of the 19th Annual
Conf. on Innovative Applications of Artificial

Intelligence (IAAI), Vancouver, British Columbia,
Canada, July 22-26, 2007.

6. Gil Y. and Ratnakar, V. “Automating To-Do Lists for
Users: Interpretation of To-Dos for Selecting and
Tasking Agents.” Proc. of the Twenty-Third Conference
of the Association for the Advancement of Artificial
Intelligence (AAAI-08), Chicago, IL, July 13-17, 2008.

7. Green, T.R.G. and M. Petre (1996). “Usability Analysis
of Visual Programming Environments: A 'Cognitive
Dimensions' Framework.” Journal of Visual Languages
and Computing 7(2): 131-174.

8. Huffman, S. and Laird, J. 1995. “Flexibly Instructable
Agents.” Journal of Artificial Intelligence Research, 3.

9. Hull D, Wolstencroft K, Stevens R, Goble C, Pocock
MR, Li P, Oinn T. “Taverna: a tool for building and
running workflows of services.” Nucleic Acids Res., 34,
2006.

10.Kelleher, C. and R. Pausch. “Lowering the Barriers to
Programming: A Taxonomy of Programming
Environments and Languages for Novice
Programmers.” ACM Computing Surveys, 37(2), 2005.

11.Koedinger, K. and J. Anderson. “Abstract Planning and
Perceptual Chunks: Elements of Expertise in
Geometry.” Cognitive Science, 14(4), 1992.

12.Lau, T., Wolfman, S., Domingos, P. and D. S. Weld.
2003. “Programming by Demonstration using Version
Space Algebra.” Machine Learning.

13.Lieberman, H. (Ed). 2001. “Your Wish Is My
Command: Programming By Example”, Morgan
Kauffman.

14.Lord P., Alper P., Wroe C., and Goble C. “Feta: A
lightweight architecture for user oriented semantic
service discovery.” 2nd European Semantic Web
Conference, (2005)

15.Ludäscher B., Altintas I., Berkley C., Higgins D.,
Jaeger-Frank E., Jones M., Lee E., Tao J., Zhao Y.
“Scientific Workflow Management and the Kepler
System.” Concurrency and Computation: Practice &
Experience, 18(10), pp. 1039-1065, 2006.

16.Miller, L. “Natural language programming: Styles,
strategies and contrasts”, IBM Systems Journal, 20,
1981.

17.Nardi, B. A. (1995). “A Small Matter of Programming:
Perspectives on End User Computing.” MIT Press,
Cambridge, MA, 1995.

18.Norman, D. 2007. “The next UI breakthrough:
command lines.” interactions 14, 3 (May. 2007)

19.Smith, D. C., Cypher, A., Tesler, L. G. 2000. “Novice
Programming Comes of Age”. Communications of the
ACM 43(3).

20.Stylos J. and Myers B. "Mica: A Programming Web
Search Aid". IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC 2006). 2006.

